A discrete model for an ill-posed nonlinear parabolic PDE
نویسندگان
چکیده
We study a finite-difference discretization of an ill-posed nonlinear parabolic partial differential equation. The PDE is the one-dimensional version of a simplified two-dimensional model for the formation of shear bands via anti-plane shear of a granular medium. For the discretized initial value problem, we derive analytically, and observed numerically, a two-stage evolution leading to a steady-state: (i) an initial growth of grid-scale instabilities, and (ii) coarsening dynamics. Elaborating the second phase, at any fixed time the solution has a piecewise linear profile with a finite number of shear bands. In this coarsening phase, one shear band after another collapses until a steady-state with just one jump discontinuity is achieved. The amplitude of this steady-state shear band is derived analytically, but due to the ill-posedness of the underlying problem, its position exhibits sensitive dependence. Analyzing data from the simulations, we observe that the number of shear bands at time t decays like t−1/3. From this scaling law, we show that the time-scale of the coarsening phase in the evolution of this model for granular media critically depends on the discreteness of the model. Our analysis also has implications to related ill-posed nonlinear PDEs for the one-dimensional Perona–Malik equation in image processing and to models for clustering instabilities in granular materials. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملA one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling
We develop and analyse a discrete, one-dimensional model of cell motility which incorporates the effects of volume filling, cell-to-cell adhesion and chemotaxis. The formal continuum limit of the model is a nonlinear generalisation of the parabolic-elliptic Keller-Segel equations, with a diffusivity which can become negative if the adhesion coefficient is large. The consequent ill-posedness res...
متن کاملConditional Stability Estimates for Ill-posed Pde Problems by Using Interpolation
The focus of this paper is on conditional stability estimates for illposed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical backgr...
متن کاملDiscrete maximum principles for nonlinear parabolic
Discrete maximum principles are established for finite element approximations 10 of nonlinear parabolic PDE systems with mixed boundary and interface conditions. The 11 results are based on an algebraic discrete maximum principle for suitable ODE systems. 12
متن کامل